Title :
Dense Correspondence Using Non-Local DAISY Forest
Author :
Xiaoshui Huang;Jian Zhang;Qiang Wu;Chun Yuan;Lixin Fan
Author_Institution :
FEIT, Univ. of Technol., Sydney, Sydney, NSW, Australia
Abstract :
Dense correspondence computation is a critical computer vision task with many applications. The most existing dense correspondence methods consider all the neighbors connected to the center pixels and use local support region. However, such approach might only achieve a locally-optimal solution.In this paper, we propose a non-local dense correspondence computation method by calculating the match cost on a tree structure. It is non-local because all other nodes on the tree contribute to the match cost computing for the current node. The proposed method consists of three steps, namely: 1) DAISY descriptor computation, 2) edge-preserving segmentation and forest construction, 3) PatchMatch fast search. We test our algorithm on the Middlebury and Moseg datasets. The results show that the proposed method outperforms the state-of-the-art methods in dense correspondence computing and has a low computation complexity.
Keywords :
"Image segmentation","Image edge detection","Vegetation","Complexity theory","Search problems","Optical imaging","Robustness"
Conference_Titel :
Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on
DOI :
10.1109/DICTA.2015.7371251