Title :
Enhanced Anomaly Detection Via PLS Regression Models and Information Entropy Theory
Author :
Harrou Fouzi;Ying Sun
Author_Institution :
CEMSE Div., King Abdullah Univ. of Sci. &
Abstract :
Accurate and effective fault detection and diagnosis of modern engineering systems is crucial for ensuring reliability, safety and maintaining the desired product quality. In this work, we propose an innovative method for detecting small faults in the highly correlated multivariate data. The developed method utilizes partial least square (PLS) method as a modelling framework, and the symmetrized Kullback-Leibler divergence (KLD) as a monitoring index, where it is used to quantify the dissimilarity between probability distributions of current PLS-based residual and reference one obtained using fault-free data. The performance of the PLS-based KLD fault detection algorithm is illustrated and compared to the conventional PLS-based fault detection methods. Using synthetic data, we have demonstrated the greater sensitivity and effectiveness of the developed method over the conventional methods, especially when data are highly correlated and small faults are of interest.
Keywords :
"Monitoring","Fault detection","Data models","Mathematical model","Yttrium","Predictive models","Measurement"
Conference_Titel :
Computational Intelligence, 2015 IEEE Symposium Series on
Print_ISBN :
978-1-4799-7560-0
DOI :
10.1109/SSCI.2015.64