Title :
Comparative study of different classifiers based speaker recognition system using modified MFCC for noisy environment
Author :
Abhilasha Sukhwal;Mahendra Kumar
Author_Institution :
Rajasthan College of Engg. for Women, Jaipur, India
Abstract :
Speaker recognition has made great progress under the laboratory environment, but in real life the performance of speaker recognition system is affected by various factors including environmental noise. This paper studies the performance of speaker recognition system in noisy environment and presents Speaker recognition system using modified Mel-Frequency Cepstral Coefficients (MFCC) technique based on different classifiers likes Euclidean distance, Back-Propagation Neural Network (BPNN), Self Organizing Map (SOM). Modified Mel-Frequency Cepstral Coefficients (MFCC) technique includes Blackman windowing instead of hamming window. This paper presents comparative plots of different classifiers based on modified Mel-Frequency Cepstral Coefficients (MFCC) technique. Speaker recognition system based on SOM Neural Network classifier provides better recognition rate compare to BPNN and Euclidean Distance based systems.
Keywords :
"Speaker recognition","Mel frequency cepstral coefficient","Training","Feature extraction","Testing","Neurons"
Conference_Titel :
Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on
DOI :
10.1109/ICGCIoT.2015.7380604