Title :
Effective handwritten digit recognition based on multi-feature extraction and deep analysis
Author :
Caiyun Ma; Hong Zhang
Author_Institution :
College of Computer Science and Technology, Wuhan University of Science and Technology, China
Abstract :
Handwritten digit recognition is an important research topic in computer vision and pattern recognition. This paper proposes an effective handwritten digit recognition approach based on specific multi-feature extraction and deep analysis. First, we normalize images of various sizes and stroke thickness in preprocessing to eliminate negative information and keep relevant features. Secondly, considering that handwritten digit image recognition is different from traditional image semantics recognition, we propose specific feature definitions, including structure features, distribution features and projection features. Moreover, we fuse multiple features into the deep neural networks for semantics recognition. Experiments results on benchmark database of MNIST handwritten digit images show that the performance of our algorithm is remarkable and demonstrate its superiority over several existing algorithms.
Keywords :
"Feature extraction","Handwriting recognition","Image recognition","Databases","Neural networks","Error analysis","Training"
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on
DOI :
10.1109/FSKD.2015.7381957