DocumentCode :
37388
Title :
A Fair Comparison of Pull and Push Strategies in Large Distributed Networks
Author :
Minnebo, Wouter ; Van Houdt, Benny
Author_Institution :
Dept. of Math. & Comput. Sci., Univ. of Antwerp, Antwerp, Belgium
Volume :
22
Issue :
3
fYear :
2014
fDate :
Jun-14
Firstpage :
996
Lastpage :
1006
Abstract :
In this paper, we compare the performance of the pull and push strategies in a large homogeneous distributed system. When a pull strategy is in use, lightly loaded nodes attempt to steal jobs from more highly loaded nodes, while under the push strategy, more highly loaded nodes look for lightly loaded nodes to process some of their jobs. Given the maximum allowed overall probe rate R and arrival rate λ, we provide closed-form solutions for the mean response time of a job for the push and pull strategy under the infinite system model. More specifically, we show that the push strategy outperforms the pull strategy for any probe rate % > 0 when λ <; φ-1, where φ = (1 +√5)/2 ≈ 1.6180 is the golden ratio. More generally, we show that the push strategy prevails if and only if 2λ <; √(R+1)2 + 4(R+1) √ (R+1). We also show that under the infinite system model, a hybrid pull-and-push strategy is always inferior to the pure pull or push strategy. The relation between the finite and infinite system model is discussed, and simulation results that validate the infinite system model are provided.
Keywords :
distribution networks; push-pull production; arrival rate; closed-form solutions; distributed networks; homogeneous distributed system; hybrid pull-and-push strategy; infinite system model; loaded nodes; mean response time; probe rate; Delays; IEEE transactions; Load modeling; Probes; Servers; Simulation; Time factors; Distributed computing; performance analysis; processor scheduling;
fLanguage :
English
Journal_Title :
Networking, IEEE/ACM Transactions on
Publisher :
ieee
ISSN :
1063-6692
Type :
jour
DOI :
10.1109/TNET.2013.2270445
Filename :
6558848
Link To Document :
بازگشت