DocumentCode :
3739183
Title :
Emergence of Regularities in the Stochastic Behavior of Human
Author :
Marc Le Goc;Fabien Barthelot;Eric Pascual
Author_Institution :
Lab. for Sci. of Inf. &
fYear :
2015
Firstpage :
381
Lastpage :
388
Abstract :
This paper aims to show that regularities emerge from the strongly stochastic properties of human behavior. To this aim, the paper presents the application of a new Knowledge Discovery in Database (KDD) process, called Timed Observations Mining for Learning (TOM4L), on the timed data provided by a smart building of offices of the southeast of France during 12 months from April 2011 to March 2012. The TOM4L process produces then 12 behavioral models of the white-collar workers of the office, one for each month of the studied period. This sequence of models put on the light the strongly stochastic properties of human behavior since they differ significantly from one month to another. This illustrates the intrinsic difficulty of discovering behavior rules from the timed data provided by a smart environment. Nevertheless, regularities clearly emerges from this sequence of behavioral models that are closely linked with seasons. Two seasons, a cold season of five month and a warm seasons of seven months, are clearly identified with this sequence but to this aim, more abstract models are required. Finally, this paper shows that the TOM4L approach is clearly operational and powerful for human behavior modeling in smart environments but higher abstraction levels of representation must be defined to discover more general behavior rules.
Keywords :
"Data models","Stochastic processes","Data mining","Adaptation models","Databases","Mathematical model","Computational modeling"
Publisher :
ieee
Conference_Titel :
Data Mining Workshop (ICDMW), 2015 IEEE International Conference on
Electronic_ISBN :
2375-9259
Type :
conf
DOI :
10.1109/ICDMW.2015.95
Filename :
7395695
Link To Document :
بازگشت