Title :
A Discovery System for Finding High-Value Homes
Author :
Yanjie Fu;Hui Xiong
Author_Institution :
Rutgers Univ., New Brunswick, NJ, USA
Abstract :
Buying a house is not only an emotional desire, but also a popular investment option. However, housing markets lack of tools and relevant systems of complete evaluation for house values. To this end, in this paper, we provide a discovery system for finding high-value homes. Unlike traditional housing price models, the proposed discovery system has taken both urban geography information and human mobility information into consideration. In this system, a suite of data mining functions have been developed to identify human mobility patterns by exploring human location traces as well as the interactions between human and Point of Interests (POIs). Given a set of candidate houses, the system can produce a ranked list of top-k high-value houses. Specifically, this demo system provides various application functions. First, it can support decision making of home buyers. Second, it can help home sellers to optimize their pricing strategies. Finally, it can help real estate developers for site selection, and thus help urban planning as well.
Keywords :
"Feature extraction","Roads","Predictive models","Public transportation","Buildings","Geography","Geospatial analysis"
Conference_Titel :
Data Mining Workshop (ICDMW), 2015 IEEE International Conference on
Electronic_ISBN :
2375-9259
DOI :
10.1109/ICDMW.2015.99