DocumentCode :
3744186
Title :
Infinite horizon average cost dynamic programming subject to ambiguity on conditional distribution
Author :
Ioannis Tzortzis;Charalambos D. Charalambous;Themistoklis Charalambous
Author_Institution :
Department of Electrical Engineering, University of Cyprus, Nicosia, Cyprus
fYear :
2015
Firstpage :
7171
Lastpage :
7176
Abstract :
This paper addresses the optimality of stochastic control strategies based on the infinite horizon average cost criterion, subject to total variation distance ambiguity on the conditional distribution of the controlled process. This stochastic optimal control problem is formulated using minimax theory, in which the minimization is over the control strategies and the maximization is over the conditional distributions. Under the assumption that, for every stationary Markov control law the maximizing conditional distribution of the controlled process is irreducible, we derive a new dynamic programming recursion which minimizes the future ambiguity, and we propose a new policy iteration algorithm. The new dynamic programming recursion includes, in addition to the standard terms, the oscillator semi-norm of the cost-to-go. The maximizing conditional distribution is found via a water-filling algorithm. The implications of our results are demonstrated through an example.
Keywords :
"Process control","Dynamic programming","Aerospace electronics","Markov processes","Optimal control","Heuristic algorithms"
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2015 IEEE 54th Annual Conference on
Type :
conf
DOI :
10.1109/CDC.2015.7403350
Filename :
7403350
Link To Document :
بازگشت