DocumentCode :
3744221
Title :
A Bayesian approach to sparse plus low rank network identification
Author :
Mattia Zorzi;Alessandro Chiuso
Author_Institution :
Dipartimento di Ingegneria dell´Informazione, Università
fYear :
2015
Firstpage :
7386
Lastpage :
7391
Abstract :
We consider the problem of modeling multivariate stochastic processes with parsimonious dynamical models which can be represented with a sparse dynamic network with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Bayesian approach to identify such models.
Keywords :
"Covariance matrices","Kernel","Stochastic processes","Data models","Predictive models","Sparse matrices","Bayes methods"
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2015 IEEE 54th Annual Conference on
Type :
conf
DOI :
10.1109/CDC.2015.7403386
Filename :
7403386
Link To Document :
بازگشت