DocumentCode :
3747032
Title :
Optimal importance sampling for simulation of L?vy processes
Author :
Guangxin Jiang;Michael C. Fu; Chenglong Xu
Author_Institution :
Department of Economics and Finance, City University of Hong Kong, Kowloon, Hong Kong
fYear :
2015
Firstpage :
3813
Lastpage :
3824
Abstract :
This paper provides an efficient algorithm using Newton´s method under sample average approximation (SAA) to solve the parametric optimization problem associated with the optimal importance sampling change of measure in simulating Lévy processes. Numerical experiments on variance gamma (VG), geometric Brownian motion (GBM), and normal inverse Gaussian (NIG) examples illustrate the computational advantages of the SAA-Newton algorithm over stochastic approximation (SA) based algorithms.
Keywords :
"Random variables","Optimization","Q measurement","Newton method","Monte Carlo methods","Pricing"
Publisher :
ieee
Conference_Titel :
Winter Simulation Conference (WSC), 2015
Electronic_ISBN :
1558-4305
Type :
conf
DOI :
10.1109/WSC.2015.7408538
Filename :
7408538
Link To Document :
بازگشت