DocumentCode :
3748609
Title :
Web-Scale Image Clustering Revisited
Author :
Yannis Avrithis;Yannis Kalantidis;Evangelos Anagnostopoulos;Ioannis Z. Emiris
fYear :
2015
Firstpage :
1502
Lastpage :
1510
Abstract :
Large scale duplicate detection, clustering and mining of documents or images has been conventionally treated with seed detection via hashing, followed by seed growing heuristics using fast search. Principled clustering methods, especially kernelized and spectral ones, have higher complexity and are difficult to scale above millions. Under the assumption of documents or images embedded in Euclidean space, we revisit recent advances in approximate k-means variants, and borrow their best ingredients to introduce a new one, inverted-quantized k-means (IQ-means). Key underlying concepts are quantization of data points and multi-index based inverted search from centroids to cells. Its quantization is a form of hashing and analogous to seed detection, while its updates are analogous to seed growing, yet principled in the sense of distortion minimization. We further design a dynamic variant that is able to determine the number of clusters k in a single run at nearly zero additional cost. Combined with powerful deep learned representations, we achieve clustering of a 100 million image collection on a single machine in less than one hour.
Keywords :
"Quantization (signal)","Visualization","Distortion","Artificial neural networks","Search problems","Probabilistic logic","Metadata"
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
Type :
conf
DOI :
10.1109/ICCV.2015.176
Filename :
7410533
Link To Document :
بازگشت