DocumentCode
3748612
Title
Conditional Random Fields as Recurrent Neural Networks
Author
Shuai Zheng;Sadeep Jayasumana;Bernardino Romera-Paredes;Vibhav Vineet;Zhizhong Su;Dalong Du;Chang Huang;Philip H. S. Torr
fYear
2015
Firstpage
1529
Lastpage
1537
Abstract
Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate Conditional Random Fields with Gaussian pairwise potentials and mean-field approximate inference as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.
Keywords
"Labeling","Image segmentation","Semantics","Graphical models","Machine learning","Training","Computer vision"
Publisher
ieee
Conference_Titel
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN
2380-7504
Type
conf
DOI
10.1109/ICCV.2015.179
Filename
7410536
Link To Document