DocumentCode :
3748674
Title :
Joint Camera Clustering and Surface Segmentation for Large-Scale Multi-view Stereo
Author :
Runze Zhang;Shiwei Li;Tian Fang;Siyu Zhu;Long Quan
Author_Institution :
Hong Kong Univ. of Sci. &
fYear :
2015
Firstpage :
2084
Lastpage :
2092
Abstract :
In this paper, we propose an optimal decomposition approach to large-scale multi-view stereo from an initial sparse reconstruction. The success of the approach depends on the introduction of surface-segmentation-based camera clustering rather than sparse-point-based camera clustering, which suffers from the problems of non-uniform reconstruction coverage ratio and high redundancy. In details, we introduce three criteria for camera clustering and surface segmentation for reconstruction, and then we formulate these criteria into an energy minimization problem under constraints. To solve this problem, we propose a joint optimization in a hierarchical framework to obtain the final surface segments and corresponding optimal camera clusters. On each level of the hierarchical framework, the camera clustering problem is formulated as a parameter estimation problem of a probability model solved by a General Expectation-Maximization algorithm and the surface segmentation problem is formulated as a Markov Random Field model based on the probability estimated by the previous camera clustering process. The experiments on several Internet datasets and aerial photo datasets demonstrate that the proposed approach method generates more uniform and complete dense reconstruction with less redundancy, resulting in more efficient multi-view stereo algorithm.
Keywords :
"Cameras","Image reconstruction","Clustering algorithms","Surface reconstruction","Three-dimensional displays","Redundancy","Minimization"
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
Type :
conf
DOI :
10.1109/ICCV.2015.241
Filename :
7410598
Link To Document :
بازگشت