DocumentCode :
3748688
Title :
MAP Disparity Estimation Using Hidden Markov Trees
Author :
Eric T. Psota;Jedrzej Kowalczuk;Mateusz Mittek; P?rez
fYear :
2015
Firstpage :
2219
Lastpage :
2227
Abstract :
A new method is introduced for stereo matching that operates on minimum spanning trees (MSTs) generated from the images. Disparity maps are represented as a collection of hidden states on MSTs, and each MST is modeled as a hidden Markov tree. An efficient recursive message-passing scheme designed to operate on hidden Markov trees, known as the upward-downward algorithm, is used to compute the maximum a posteriori (MAP) disparity estimate at each pixel. The messages processed by the upward-downward algorithm involve two types of probabilities: the probability of a pixel having a particular disparity given a set of per-pixel matching costs, and the probability of a disparity transition between a pair of connected pixels given their similarity. The distributions of these probabilities are modeled from a collection of images with ground truth disparities. Performance evaluation using the Middlebury stereo benchmark version 3 demonstrates that the proposed method ranks second and third in terms of overall accuracy when evaluated on the training and test image sets, respectively.
Keywords :
"Hidden Markov models","Message passing","Estimation","Image edge detection","Image color analysis","Computational modeling","Algorithm design and analysis"
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
Type :
conf
DOI :
10.1109/ICCV.2015.256
Filename :
7410613
Link To Document :
بازگشت