• DocumentCode
    3748852
  • Title

    Efficient PSD Constrained Asymmetric Metric Learning for Person Re-Identification

  • Author

    Shengcai Liao;Stan Z. Li

  • Author_Institution
    Center for Biometrics &
  • fYear
    2015
  • Firstpage
    3685
  • Lastpage
    3693
  • Abstract
    Person re-identification is becoming a hot research topic due to its value in both machine learning research and video surveillance applications. For this challenging problem, distance metric learning is shown to be effective in matching person images. However, existing approaches either require a heavy computation due to the positive semidefinite (PSD) constraint, or ignore the PSD constraint and learn a free distance function that makes the learned metric potentially noisy. We argue that the PSD constraint provides a useful regularization to smooth the solution of the metric, and hence the learned metric is more robust than without the PSD constraint. Another problem with metric learning algorithms is that the number of positive sample pairs is very limited, and the learning process is largely dominated by the large amount of negative sample pairs. To address the above issues, we derive a logistic metric learning approach with the PSD constraint and an asymmetric sample weighting strategy. Besides, we successfully apply the accelerated proximal gradient approach to find a global minimum solution of the proposed formulation, with a convergence rate of O(1/t^2) where t is the number of iterations. The proposed algorithm termed MLAPG is shown to be computationally efficient and able to perform low rank selection. We applied the proposed method for person re-identification, achieving state-of-the-art performance on four challenging databases (VIPeR, QMUL GRID, CUHK Campus, and CUHK03), compared to existing metric learning methods as well as published results.
  • Keywords
    "Measurement","Logistics","Convergence","Acceleration","Linear programming","Optimization","Algorithm design and analysis"
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision (ICCV), 2015 IEEE International Conference on
  • Electronic_ISBN
    2380-7504
  • Type

    conf

  • DOI
    10.1109/ICCV.2015.420
  • Filename
    7410777