Title :
Multi-label Cross-Modal Retrieval
Author :
Viresh Ranjan;Nikhil Rasiwasia;C. V. Jawahar
Abstract :
In this work, we address the problem of cross-modal retrieval in presence of multi-label annotations. In particular, we introduce multi-label Canonical Correlation Analysis (ml-CCA), an extension of CCA, for learning shared subspaces taking into account high level semantic information in the form of multi-label annotations. Unlike CCA, ml-CCA does not rely on explicit pairing between modalities, instead it uses the multi-label information to establish correspondences. This results in a discriminative subspace which is better suited for cross-modal retrieval tasks. We also present Fast ml-CCA, a computationally efficient version of ml-CCA, which is able to handle large scale datasets. We show the efficacy of our approach by conducting extensive cross-modal retrieval experiments on three standard benchmark datasets. The results show that the proposed approach achieves state of the art retrieval performance on the three datasets.
Keywords :
"Correlation","Semantics","Multimedia communication","Benchmark testing","Computer vision","Standards","Portable computers"
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
DOI :
10.1109/ICCV.2015.466