• DocumentCode
    3748907
  • Title

    Multi-view Domain Generalization for Visual Recognition

  • Author

    Li Niu;Wen Li;Dong Xu

  • Author_Institution
    Interdiscipl. Grad. Sch., Nanyang Technol. Univ., Singapore, Singapore
  • fYear
    2015
  • Firstpage
    4193
  • Lastpage
    4201
  • Abstract
    In this paper, we propose a new multi-view domain generalization (MVDG) approach for visual recognition, in which we aim to use the source domain samples with multiple types of features (i.e., multi-view features) to learn robust classifiers that can generalize well to any unseen target domain. Considering the recent works show the domain generalization capability can be enhanced by fusing multiple SVM classifiers, we build upon exemplar SVMs to learn a set of SVM classifiers by using one positive sample and all negative samples in the source domain each time. When the source domain samples come from multiple latent domains, we expect the weight vectors of exemplar SVM classifiers can be organized into multiple hidden clusters. To exploit such cluster structure, we organize the weight vectors learnt on each view as a weight matrix and seek the low-rank representation by reconstructing this weight matrix using itself as the dictionary. To enforce the consistency of inherent cluster structures discovered from the weight matrices learnt on different views, we introduce a new regularizer to minimize the mismatch between any two representation matrices on different views. We also develop an efficient alternating optimization algorithm and further extend our MVDG approach for domain adaptation by exploiting the manifold structure of unlabeled target domain samples. Comprehensive experiments for visual recognition clearly demonstrate the effectiveness of our approaches for domain generalization and domain adaptation.
  • Keywords
    "Training","Support vector machines","Training data","Visualization","Testing","Optimization","Linear matrix inequalities"
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision (ICCV), 2015 IEEE International Conference on
  • Electronic_ISBN
    2380-7504
  • Type

    conf

  • DOI
    10.1109/ICCV.2015.477
  • Filename
    7410834