• DocumentCode
    3753885
  • Title

    Decentralized Group Sparse Beamforming for Multi-Cloud Radio Access Networks

  • Author

    Oussama Dhifallah;Hayssam Dahrouj;Tareq Y. Al-Naffouri;Mohamed-Slim Alouini

  • Author_Institution
    Electr. &
  • fYear
    2015
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    Recent studies on cloud-radio access networks (CRANs) assume the availability of a single processor (cloud) capable of managing the entire network performance; inter-cloud interference is treated as background noise. This paper considers the more practical scenario of the downlink of a CRAN formed by multiple clouds, where each cloud is connected to a cluster of multiple-antenna base stations (BSs) via high-capacity wireline backhaul links. The network is composed of several disjoint BSs´ clusters, each serving a pre-known set of single-antenna users. To account for both inter- cloud and intra-cloud interference, the paper considers the problem of minimizing the total network power consumption subject to quality of service constraints, by jointly determining the set of active BSs connected to each cloud and the beamforming vectors of every user across the network. The paper solves the problem using Lagrangian duality theory through a dual decomposition approach, which decouples the problem into multiple and independent subproblems, the solution of which depends on the dual optimization problem. The solution then proceeds in updating the dual variables and the active set of BSs at each cloud iteratively. The proposed approach leads to a distributed implementation across the multiple clouds through a reasonable exchange of information between adjacent clouds. The paper further proposes a centralized solution to the problem. Simulation results suggest that the proposed algorithms significantly outperform the conventional per-cloud update solution, especially at high signal-to-interference-plus- noise ratio (SINR) target.
  • Keywords
    "Interference","Array signal processing","Optimization","Cloud computing","Power demand","Signal to noise ratio","Downlink"
  • Publisher
    ieee
  • Conference_Titel
    Global Communications Conference (GLOBECOM), 2015 IEEE
  • Type

    conf

  • DOI
    10.1109/GLOCOM.2015.7417787
  • Filename
    7417787