Title :
Edge-enhancing filters with negative weights
Author_Institution :
Mitsubishi Electric Research Laboratories (MERL), 201 Broadway, Cambridge, MA 02139, USA
Abstract :
In [D01:10.1109/ICMEW.2014.6890711], a graph-based denoising is performed by projecting the noisy image to a lower dimensional Krylov subspace of the graph Laplacian, constructed using nonnegative weights determined by distances between image data corresponding to image pixels. We extend the construction of the graph Laplacian to the case, where some graph weights can be negative. Removing the positivity constraint provides a more accurate inference of a graph model behind the data, and thus can improve quality of filters for graph-based signal processing, e.g., denoising, compared to the standard construction, without affecting the costs.
Keywords :
"Laplace equations","Image edge detection","Noise reduction","Noise measurement","Symmetric matrices","Eigenvalues and eigenfunctions","Vibrations"
Conference_Titel :
Signal and Information Processing (GlobalSIP), 2015 IEEE Global Conference on
DOI :
10.1109/GlobalSIP.2015.7418197