DocumentCode
3758673
Title
A citation similarity based community detection method in citation networks
Author
Tianpeng Liu;Kan Li
Author_Institution
Department of Computer Science, Beijing Institute of Technology, Beijing, China
fYear
2015
Firstpage
146
Lastpage
149
Abstract
Citation networks are important for us to understand the academic fields. By resolving the community structure, we can find out the subfields in the network. Many methods have been proposed to detect the communities in networks. However, they are not suitable to use directly in citation networks because they can be misled by some special papers and they do not take full advantage of the information contained in citation networks. To solve the problems, we propose a citation similarity based community detection method to detect the communities in citation networks. By transforming citation network to paper similarity network, we can use more information to resolve the community structure in citation networks and identify communities more precisely. The experiment results show that our method performs better in resolving community structure comparing with the method using directly in citation networks.
Keywords
Decision support systems
Publisher
ieee
Conference_Titel
Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2015 IEEE
Print_ISBN
978-1-4799-1979-6
Type
conf
DOI
10.1109/IAEAC.2015.7428536
Filename
7428536
Link To Document