DocumentCode :
3764776
Title :
Locality constrained linear coding for fault diagnosis of rotating machines using vibration analysis
Author :
K. T. Sreekumar;R. Gopinath;M. Pushparajan;Aparna S. Raghunath;C. Santhosh Kumar;K. I. Ramachandran;M. Saimurugan
Author_Institution :
Machine Intelligence Research Laboratory, Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
fYear :
2015
Firstpage :
1
Lastpage :
6
Abstract :
Support Vector Machine (SVM) is an important machine learning algorithm widely used for the development of machine fault diagnosis systems. In this work, we use an SVM back-end classifier, with statistical features in time and frequency domain as its input, for the development of a fault diagnosis system for a rotating machine. Our baseline system is evaluated for its speed dependent and speed independent performances. In this paper, we use locality constrained linear coding (LLC) to map the input feature vectors to a higher dimensional linear space, and remove some of the speed specific dimensions to improve the speed independent performance of the fault diagnosis system. We use LLC to do the feature mapping to the higher dimensional space, and select only the k nearest neighbour basis vectors to represent the input feature vector and thus reduce/minimize the effect of speed specific factors from the input feature vector, and thus improve the speed independent performance of the fault diagnosis. We compare the performance of the LLC-SVM system for the time and frequency domain statistical features. The proposed approach has improved the overall classification accuracy by 11.81% absolute for time domain features and 10.53% absolute for frequency domain features compared to the baseline speed independent system.
Keywords :
"Shafts","Support vector machines","Fault diagnosis","Rotors","Encoding","Vibrations","Frequency-domain analysis"
Publisher :
ieee
Conference_Titel :
India Conference (INDICON), 2015 Annual IEEE
Electronic_ISBN :
2325-9418
Type :
conf
DOI :
10.1109/INDICON.2015.7443476
Filename :
7443476
Link To Document :
بازگشت