DocumentCode :
3765455
Title :
An improved system for sentence-level novelty detection in textual streams
Author :
Xinyu Fu;Eugene Ch´ng;Uwe Aickelin;Lanyun Zhang
Author_Institution :
InternationalDoctoralInnovation Centre, The University of Nottingham, Ningbo, China
fYear :
2015
fDate :
7/1/2015 12:00:00 AM
Firstpage :
1
Lastpage :
6
Abstract :
Novelty detection in news events has long been a difficult problem. A number of models performed well on specific data streams but certain issues are far from being solved, particularly in large data streams from the WWW where unpredictability of new terms requires adaptation in the vector space model. We present a novel event detection system based on the Incremental Term Frequency-Inverse Document Frequency (TF-IDF) weighting incorporated with Locality Sensitive Hashing (LSH). Our system could efficiently and effectively adapt to the changes within the data streams of any new terms with continual updates to the vector space model. Regarding miss probability, our proposed novelty detection framework outperforms a recognised baseline system by approximately 16% when evaluating a benchmark dataset from Google News.
Publisher :
iet
Conference_Titel :
Smart and Sustainable City and Big Data (ICSSC), 2015 International Conference on
Type :
conf
DOI :
10.1049/cp.2015.0250
Filename :
7446433
Link To Document :
بازگشت