DocumentCode :
3770883
Title :
Experimental and simulation studies of interface properties of crystalline germanium heterojunction solar cells
Author :
S. Nakano;Y. Takeuchi
Author_Institution :
Mitsubishi Heavy Industries, Ltd., 6-57 Tsukuba-machi, Isahaya, Nagasaki, Japan
fYear :
2014
fDate :
7/1/2014 12:00:00 AM
Firstpage :
1
Lastpage :
5
Abstract :
Numerical simulation of crystalline germanium (c-Ge) heterojunction solar cell was performed using simulation software AFORS-HET. We confirmed that a difference of the minority carrier band offset of n-type hydrogenated amorphous silicon (a-Si:H(n))/c-Ge(p) and a-Si:H(p)/c-Ge(n) structure has great impacts for solar cell performance. The a-Si:H(p)/c-Ge(n) valence band offset of 0.96 eV induces larger band bending in the c-Ge(n) absorber compared with the a-Si:H(n)/c-Ge(p) whose conduction band offset is 0.1 eV. The large band bending can reduce interface recombination due to the reduction of the majority carrier density near the interface. However the offset of 0.96 eV is too large and impedes photogenerated carrier collection. We applied crystalline-Si(p) whose band gap is lower than a-Si:H(p) as the emitter and confirmed that the current limitation was avoided keeping large band bending. On the other hand, although the band bending of the a-Si:H(n)/c-Ge(p) is too small to reduce the interface recombination, the donor doping to the interface layer, whose cell performance improvement effect was experimentally demonstrated, induces large band bending and improves cell performance.
Keywords :
"Photovoltaic cells","Substrates","Buffer layers","Voltage measurement","Numerical models","Solid modeling","Charge carrier processes"
Publisher :
ieee
Conference_Titel :
Nanoelectronics Conference (INEC), 2014 IEEE International
Electronic_ISBN :
2159-3531
Type :
conf
DOI :
10.1109/INEC.2014.7460329
Filename :
7460329
Link To Document :
بازگشت