DocumentCode :
3772730
Title :
Summary of thermocouple performance during advanced gas reactor fuel irradiation experiments in the advanced test reactor and out-of-pile thermocouple testing in support of such experiments
Author :
A. J. Palmer;D. C. Haggard;J. W. Herter;M. Scervini;W. D. Swank;D. L. Knudson;R. S. Cherry
Author_Institution :
Idaho National Laboratory, P.O. Box 1625, MS 4112, Idaho Falls, ID, USA
fYear :
2015
fDate :
4/1/2015 12:00:00 AM
Firstpage :
1
Lastpage :
9
Abstract :
High temperature gas reactor experiments create unique challenges for thermocouple-based temperature measurements. As a result of the interaction with neutrons, the thermoelements of the thermocouples undergo transmutation, which produces a time-dependent change in composition and, as a consequence, a time-dependent drift of the thermocouple signal. This drift is particularly severe for high temperature platinum-rhodium thermocouples (Types S, R, and B) and tungsten-rhenium thermocouples (Type C). For lower temperature applications, previous experiences with Type K thermocouples in nuclear reactors have shown that they are affected by neutron irradiation only to a limited extent. Similarly, Type N thermocouples are expected to be only slightly affected by neutron fluence. Currently, the use of these nickel-based thermocouples is limited when the temperature exceeds 1000°C due to drift related to phenomena other than nuclear irradiation. High rates of open-circuit failure are also typical. Over the past 10 years, three long-term Advanced Gas Reactor experiments have been conducted with measured temperatures ranging from 700°C-1200°C. A variety of standard Type N and specialty thermocouple designs have been used in these experiments with mixed results. A brief summary of thermocouple performance in these experiments is provided. Most recently, out-of-pile testing has been conducted on a variety of Type N thermocouple designs at the following (nominal) temperatures and durations: 1150°C and 1200°C for 2,000 hours at each temperature, followed by 200 hours at 1250°C and 200 hours at 1300°C. The standard Type N design utilizes high purity, crushed MgO insulation and an Inconel 600 sheath. Several variations on the standard Type N design were tested, including a Haynes 214 alloy sheath, spinel (MgAl2O4) insulation instead of MgO, a customized sheath developed at the University of Cambridge, and finally a loose assembly thermocouple with hard-fired alumina insulation and a molybdenum sheath. The most current version of the High Temperature Irradiation Resistant Thermocouple, based on molybdenum/niobium alloys and developed at Idaho National Laboratory, was also tested.
Keywords :
"Radiation effects","Inductors","Fuels","Temperature measurement","Insulation","Temperature distribution","Furnaces"
Publisher :
ieee
Conference_Titel :
Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2015 4th International Conference on
Type :
conf
DOI :
10.1109/ANIMMA.2015.7465501
Filename :
7465501
Link To Document :
بازگشت