DocumentCode :
3775383
Title :
Optimization based path planning via Big Bang-Big Crunch with Local Search
Author :
Sabri Y?lmaz;Metin G?ka?an
Author_Institution :
Control and Automation Engineering Department, Istanbul Technical University, Turkey
fYear :
2015
Firstpage :
60
Lastpage :
65
Abstract :
In this paper a search for the trajectory that minimizes the cost function is studied. In robotic studies the cost function can be defined as a function of time, tracking error or applied torque. In this study the cost function is selected as a function of applied torque, so the main aim is minimizing the energy consumption. For this purpose a simple robot manipulator is chosen, and its kinematic and dynamic models are derived by Denavit-Hartenberg convention and Euler-Lagrange method. Then two different trajectory polynomials are described, one is solved from boundary conditions without optimization and one is solved by optimization and the same boundary conditions. These two different trajectory polynomials and their cost functions values are compared. The effect and efficiency of optimization are examined.
Keywords :
"Trajectory","Cost function","Boundary conditions","Robots","Acceleration","Angular velocity"
Publisher :
ieee
Conference_Titel :
Control System, Computing and Engineering (ICCSCE), 2015 IEEE International Conference on
Type :
conf
DOI :
10.1109/ICCSCE.2015.7482158
Filename :
7482158
Link To Document :
بازگشت