Title :
Fine-grain annotation of cricket videos
Author :
Rahul Anand Sharma;K. Pramod Sankar;C. V. Jawahar
Author_Institution :
CVIT, IIIT-Hyderabad, Hyderabad, India
Abstract :
The recognition of human activities is one of the key problems in video understanding. Action recognition is challenging even for specific categories of videos, such as sports, that contain only a small set of actions. Interestingly, sports videos are accompanied by detailed commentaries available online, which could be used to perform action annotation in a weakly-supervised setting. For the specific case of Cricket videos, we address the challenge of temporal segmentation and annotation of actions with semantic descriptions. Our solution consists of two stages. In the first stage, the video is segmented into "scenes", by utilizing the scene category information extracted from text-commentary. The second stage consists of classifying videoshots as well as the phrases in the textual description into various categories. The relevant phrases are then suitably mapped to the video-shots. The novel aspect of this work is the fine temporal scale at which semantic information is assigned to the video. As a result of our approach, we enable retrieval of specific actions that last only a few seconds, from several hours of video. This solution yields a large number of labelled exemplars, with no manual effort, that could be used by machine learning algorithms to learn complex actions.
Keywords :
"Videos","Visualization","Semantics","Image segmentation","Pattern recognition","Motion pictures","Sports equipment"
Conference_Titel :
Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
Electronic_ISBN :
2327-0985
DOI :
10.1109/ACPR.2015.7486538