DocumentCode
3776010
Title
Skeleton based action recognition with convolutional neural network
Author
Yong Du;Yun Fu;Liang Wang
Author_Institution
Center for Research on Intelligent Perception and Computing, CRIPAC
fYear
2015
Firstpage
579
Lastpage
583
Abstract
Temporal dynamics of postures over time is crucial for sequence-based action recognition. Human actions can be represented by the corresponding motions of articulated skeleton. Most of the existing approaches for skeleton based action recognition model the spatial-temporal evolution of actions based on hand-crafted features. As a kind of hierarchically adaptive filter banks, Convolutional Neural Network (CNN) performs well in representation learning. In this paper, we propose an end-to-end hierarchical architecture for skeleton based action recognition with CNN. Firstly, we represent a skeleton sequence as a matrix by concatenating the joint coordinates in each instant and arranging those vector representations in a chronological order. Then the matrix is quantified into an image and normalized to handle the variable-length problem. The final image is fed into a CNN model for feature extraction and recognition. For the specific structure of such images, the simple max-pooling plays an important role on spatial feature selection as well as temporal frequency adjustment, which can obtain more discriminative joint information for different actions and meanwhile address the variable-frequency problem. Experimental results demonstrate that our method achieves the state-of-art performance with high computational efficiency, especially surpassing the existing result by more than 15 percentage on the challenging ChaLearn gesture recognition dataset.
Keywords
"Hidden Markov models","Adaptation models","Training","Adaptive filters","Joints","Time series analysis"
Publisher
ieee
Conference_Titel
Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
Electronic_ISBN
2327-0985
Type
conf
DOI
10.1109/ACPR.2015.7486569
Filename
7486569
Link To Document