• DocumentCode
    3776010
  • Title

    Skeleton based action recognition with convolutional neural network

  • Author

    Yong Du;Yun Fu;Liang Wang

  • Author_Institution
    Center for Research on Intelligent Perception and Computing, CRIPAC
  • fYear
    2015
  • Firstpage
    579
  • Lastpage
    583
  • Abstract
    Temporal dynamics of postures over time is crucial for sequence-based action recognition. Human actions can be represented by the corresponding motions of articulated skeleton. Most of the existing approaches for skeleton based action recognition model the spatial-temporal evolution of actions based on hand-crafted features. As a kind of hierarchically adaptive filter banks, Convolutional Neural Network (CNN) performs well in representation learning. In this paper, we propose an end-to-end hierarchical architecture for skeleton based action recognition with CNN. Firstly, we represent a skeleton sequence as a matrix by concatenating the joint coordinates in each instant and arranging those vector representations in a chronological order. Then the matrix is quantified into an image and normalized to handle the variable-length problem. The final image is fed into a CNN model for feature extraction and recognition. For the specific structure of such images, the simple max-pooling plays an important role on spatial feature selection as well as temporal frequency adjustment, which can obtain more discriminative joint information for different actions and meanwhile address the variable-frequency problem. Experimental results demonstrate that our method achieves the state-of-art performance with high computational efficiency, especially surpassing the existing result by more than 15 percentage on the challenging ChaLearn gesture recognition dataset.
  • Keywords
    "Hidden Markov models","Adaptation models","Training","Adaptive filters","Joints","Time series analysis"
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
  • Electronic_ISBN
    2327-0985
  • Type

    conf

  • DOI
    10.1109/ACPR.2015.7486569
  • Filename
    7486569