Title :
Mid-level parts mined by feature selection for action recognition
Author :
ShiWei Zhang;Nong Sang;ChangXin Gao;FeiFei Chen;Jing Hu
Author_Institution :
Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, China
Abstract :
This paper develops a method to learn very few discriminative part detectors from training videos directly, for action recognition. We hold the opinion that being discriminative to action classification is of primary importance in selecting part detectors, not just intuitive. For this purpose, part selection based on feature selection is proposed, employing SVM method. Firstly, large number of candidate detectors are trained using k-means and Exemplar-LDA techniques in whitened feature space. Secondly, each candidate part detector is regarded as a visual feature, so that detector selection can be achieved by feature selection. Detectors with larger weight, indicating more discriminative, will be selected. Meanwhile, to keep space-volume structure information, we use the novel method saliency-driven pooling to form feature primitives which are concatenated into mid-level feature vector. Finally, we conduct experiments on three challenging action datasets (KTH, Olympic Sports, HMDB51) and the results outperform the state-of-the-art.
Keywords :
"Detectors","Feature extraction","Videos","Support vector machines","Semantics","Pattern recognition","Image recognition"
Conference_Titel :
Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
Electronic_ISBN :
2327-0985
DOI :
10.1109/ACPR.2015.7486577