Title :
Beyond human recognition: A CNN-based framework for handwritten character recognition
Author :
Li Chen;Song Wang;Wei Fan;Jun Sun;Satoshi Naoi
Author_Institution :
Fujitsu Research & Development Center, Beijing, China
Abstract :
Because of the various appearance (different writers, writing styles, noise, etc.), the handwritten character recognition is one of the most challenging task in pattern recognition. Through decades of research, the traditional method has reached its limit while the emergence of deep learning provides a new way to break this limit. In this paper, a CNN-based handwritten character recognition framework is proposed. In this framework, proper sample generation, training scheme and CNN network structure are employed according to the properties of handwritten characters. In the experiments, the proposed framework performed even better than human on handwritten digit (MNIST) and Chinese character (CASIA) recognition. The advantage of this framework is proved by these experimental results.
Keywords :
"Training","Distortion","Character recognition","Machine learning","Error analysis","Neurons"
Conference_Titel :
Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
Electronic_ISBN :
2327-0985
DOI :
10.1109/ACPR.2015.7486592