Title :
Food Image Recognition with Convolutional Neural Networks
Author :
Weishan Zhang;Dehai Zhao;Wenjuan Gong;Zhongwei Li;Qinghua Lu;Su Yang
Author_Institution :
Dept. of Software Eng., China Univ. of Pet., Qingdao, China
Abstract :
In this paper, we propose a food image recognition system with convolutional neural networks(CNN), which has been applied to image recognition successfully in the literature. A CNN which consists of five layers has been built and two group of controlled trials have been processed on it. Two datasets are prepared: one is UEC-FOOD100 dataset which is an open 100-class food image dataset including about 15000 images and the other is a fruit dataset that established by ourselves including over 40000 images. We have achieved the best accuracy of 80.8% on the fruit dataset and 60.9% on the multi-food dataset. In addition, we validate the method on two groups of controlled trials and discover the effect of color under various conditions that the color feature is not always helpful for improving the accuracy by comparing the results of two group of controlled trials. As future work, we will combine image segmentation with image recognition to get a better performance.
Keywords :
"Image recognition","Feature extraction","Image color analysis","Kernel","Error analysis","Visualization","Neurons"
Conference_Titel :
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on
DOI :
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.139