Title :
3D modeling of coupling between superconducting filaments via resistive matrix in AC magnetic field
Author :
M. Costa;E. Martinez;C. Beduz;Y. Yang;F. Grilli;B. Dutoit;E. Vinot;P. Tixador
Author_Institution :
Sch. of Eng. Sci., Univ. of Southampton, UK
Abstract :
The ac loss of superconducting composite depends strongly on coupling between superconducting filaments via the resistive matrix. The established technique for loss reduction using twisted filaments relies on the decoupling of the filaments below a critical coupling field Bc, which increases with the reduction of the twist pitch and the matrix conductivity. Although the concept of Bc may be clearly demonstrated using two infinite slabs of finite length, further details on its correlation with the filament/conductor geometry are not yet available. The main obstacle is due to the fact that any accurate analysis of such a problem must be carried out in 3d. In this paper, we describe the initial results from 3d modeling using Cedrat´s Flux3D, for which a superconductor module for handling power-law E-J characteristics was developed. Using a simple model of two rectangular superconductors connected through a normal metal, we demonstrate the feasibility for quantitative modeling of their coupling behavior over a wide range of field sweep rates for different conductor geometries. Typical examples were given for cases not addressed by the existing approximate theory, as well as for the evolution of field profile for varying field sweep rate.
Keywords :
"Couplings","Superconducting materials","Magnetic fields","High temperature superconductors","Superconducting filaments and wires","Conductors","Conductivity","Slabs","Geometry","Solid modeling"
Journal_Title :
IEEE Transactions on Applied Superconductivity
DOI :
10.1109/TASC.2003.812416