Title :
Helical Cerenkov effect, a novel radiation source
Author_Institution :
Army Res. Lab., Adelphi, MD, USA
Abstract :
The observability of the helical Cerenkov effect as a novel radiation source is discussed. Depending on the value of the index of refraction of the medium, the strength of the uniform magnetic field, and the electron beam energy, helical Cerenkov radiation can occur in the same spectral regions as the ordinary Cerenkov effect, that is, from microwave to visible wavelengths. From the kinematics point of view, I argue that for a microwave wavelength of 10/sup -1/cm this effect should be observable in a medium with an index of refraction of 1.4, with a beam energy of 3 MeV, and a uniform magnetic field of 4 T. On the specific level, however, for the sake of simplicity, I discuss the observability of this effect for visible light with the central wavelength of 5/spl times/10/sup -5/ cm which can be achieved with 2 MeV in beam energy, silica aerogel as a medium (with an index of refraction of 1.075), and uniform magnetic fields from 5 to 10 T. For a 10-T magnetic field, I calculate that in the visible region of 250 to 750 nm an electron will produce a photon per 10 cm of traveled length. As to the stimulated helical Cerenkov emission, I estimate that respectable gains are possible even if the beam passes close to the dielectric rather than through it. In addition to being potentially a new radiation source, the helical Cerenkov effect could possibly be used as a detector of radiation by energetic electrons that are trapped in a medium by strong magnetic fields.
Keywords :
"Synchrotron radiation","Magnetic fields","Observability","Electron beams","Optical refraction","Dielectrics","Radiation detectors","Electron traps","Kinematics","Silicon compounds"
Journal_Title :
IEEE Transactions on Plasma Science