DocumentCode :
3802571
Title :
Subwavelength Microdisk and Microring Terahertz Quantum-Cascade Lasers
Author :
Gernot Fasching;Vincas Tamosiunas;Alexander Benz;Aaron Maxwell Andrews;Karl Unterrainer;Reinhard Zobl;Tomas Roch;Werner Schrenk;Gottfried Strasser
Author_Institution :
Vienna Univ. of Technol., Wien
Volume :
43
Issue :
8
fYear :
2007
Firstpage :
687
Lastpage :
697
Abstract :
We report on the emission characteristics of microcavity quantum-cascade lasers emitting in the terahertz frequency range based on circular-shaped microresonators. Strong mode confinement in the growth and in-plane directions are provided by a double-plasmon waveguide and due to the strong impedance mismatch between the gain material and air. This allows laser emission from devices with overall dimensions much smaller than the free-air emission wavelength (lambda > 100 mum). Hence, for the smallest microdisks we achieved a threshold current as low as 13.5 mA (350 A/cm2) in pulsed-mode operation at 5 K and stable single-mode emission up to 95 K in continuous-wave mode operation. We have observed dynamical frequency pulling of the resonator mode on the gigahertz scale, as a consequence of the gain shift due to the quantum-confined Stark effect. Thus, we were able to estimate the peak gain of the material to 27 cm-1. The smallest microcavities exhibited a strong dependence on the exact placement of the bond wire which resulted in single- as well as double-mode emission. Finite-difference time-domain simulations were performed in order to identify the modes of the recorded spectra. They confirm that most of the observed spectral features can be attributed to the lasing emission of whispering-gallery modes.
Keywords :
"Laser modes","Waveguide lasers","Microcavities","Frequency","Impedance","Optical materials","Threshold current","Stark effect","Bonding","Wire"
Journal_Title :
IEEE Journal of Quantum Electronics
Publisher :
ieee
ISSN :
0018-9197
Type :
jour
DOI :
10.1109/JQE.2007.900254
Filename :
4276831
Link To Document :
بازگشت