Title :
Detailed CFD Modeling of EMC Screen for Radio Base Stations: A Benchmark Study
Author :
Ra?l Anton;Hans Jonsson;Bahram Moshfegh
Author_Institution :
Navarra Univ., Navarra
Abstract :
The objective of this paper is to investigate the performance of five well-known turbulence models, in order to find a model that predicts the details of the flow patterns through an electromagnetic compatibility (EMC) screen. The turbulence models investigated in the present study are five different eddy-viscosity models; the standard k-epsiv model, the renormalization group (RNG) k-epsiv model, the realizable k-epsiv model, the standard k-omega model, as well as the shear stress transport k-omega model. A steady-state 3-D detailed model, which serves as the most accurate representation of the model, was used in order to evaluate the details of the airflow paths and pressure field. The flow was assumed to be isothermal, turbulent and incompressible. A general model that covers a considerable range of velocities and geometries was validated experimentally by wind tunnel measurements. The result shows that for most of the k-epsiv models used with correct y+ and mesh strategy, the pressure drop and the velocity field deviation is small compared to experimental data. The k-omega models overpredict the overall pressure drop. When using the RNG k-epsiv model, the total static pressure drop predicted differs around 5%-10% and the average velocity deviation at several locations before and after the screen is around 5%.
Keywords :
"Computational fluid dynamics","Electromagnetic compatibility","Base stations","Predictive models","Electromagnetic modeling","Stress","Steady-state","Isothermal processes","Solid modeling","Geometry"
Journal_Title :
IEEE Transactions on Components and Packaging Technologies
DOI :
10.1109/TCAPT.2007.910048