DocumentCode :
380895
Title :
Text-independent speaker identification by genetic clustering radial basis function neural network
Author :
Xicai, Yue ; Datian, Ye ; Ming, Liu
Author_Institution :
Dept. of Electr. Eng. & Appl. Electron. Technol., Tsinghua Univ., Beijing, China
Volume :
2
fYear :
2001
fDate :
2001
Firstpage :
1777
Abstract :
The authors combine genetic clustering algorithm with radial basis function neural network (RBFNN) for avoiding locally optimum solutions in speaker identification. The effectiveness of genetic clustering algorithm is evaluated with speech utterances by comparing with normal clustering method. Speaker identification experiments show that genetic clustering RBFNN can improve the correctness of text-independent speaker identification.
Keywords :
feature extraction; genetic algorithms; pattern clustering; radial basis function networks; speaker recognition; vector quantisation; chromosome coding; feature extraction; fitness function; genetic clustering algorithm; optimized clustering; radial basis function neural network; speech utterances; text-independent speaker identification; vector quantization; Biological cells; Clustering algorithms; Clustering methods; Genetic algorithms; Hidden Markov models; Nearest neighbor searches; Optimization methods; Radial basis function networks; Speech; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE
ISSN :
1094-687X
Print_ISBN :
0-7803-7211-5
Type :
conf
DOI :
10.1109/IEMBS.2001.1020564
Filename :
1020564
Link To Document :
بازگشت