DocumentCode :
3814924
Title :
Autobinomial Model for SAR Image Despeckling and Information Extraction
Author :
Marko Hebar;Du?an Gleich;Zarko Cucej
Author_Institution :
Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor, Slovenia
Volume :
47
Issue :
8
fYear :
2009
Firstpage :
2818
Lastpage :
2835
Abstract :
This paper presents a model-based despeckling (MBD) of synthetic aperture radar (SAR) images using Bayesian analysis. The SAR image is despeckled using first-order Bayesian inference. The novelty in this paper is an autobinomial model (ABM), which models a prior probability density function (pdf); meanwhile, the likelihood pdf is modeled as a gamma distribution. Analytically, a solution for a maximum a posteriori estimate using an autobinomial prior cannot be computed; therefore, an approximation is introduced using differential. The best ABM for approximating the texture parameters in SAR images is found by using second-order Bayesian inference. The edges in the SAR images are detected using region borders, which have statistically different properties. Coefficient of variation is used to distinguish between homogeneous and heterogeneous areas. The experimental results show that the proposed method preserves the textural features and removes noise significantly in the homogeneous and heterogeneous regions. The proposed despeckling method is good regarding objective measures for synthetic images and better despeckles the real SAR images, when compared with the state-of-the-art MBD methods.
Keywords :
"Data mining","Speckle","Synthetic aperture radar","Bayesian methods","Adaptive filters","Image analysis","Probability density function","Image edge detection","Radar imaging","Spaceborne radar"
Journal_Title :
IEEE Transactions on Geoscience and Remote Sensing
Publisher :
ieee
ISSN :
0196-2892
Type :
jour
DOI :
10.1109/TGRS.2009.2013697
Filename :
4926221
Link To Document :
بازگشت