DocumentCode :
3818510
Title :
Huber–Markov Model for Complex SAR Image Restoration
Author :
Matteo Soccorsi;Dusan Gleich;Mihai Datcu
Author_Institution :
Institut f?r Methodik der Fernerkundung, Deutsches Zentrum f?r Luft- und Raumfahrt (DLR), Wessling, Germany
Volume :
7
Issue :
1
fYear :
2010
Firstpage :
63
Lastpage :
67
Abstract :
This letter presents the despeckling of single-look complex (SLC) synthetic aperture radar (SAR) images using nonquadratic regularization. The objective function consists of an image model, a gradient, and a prior model. The Huber-Markov random field (HMRF) models the prior. A numerical solution is achieved through extensions of half-quadratic regularization methods using complex-valued SAR data. The proposed method using the HMRF prior together with nonquadratic regularization shows the superior results on SLC synthetic and actual SAR images.
Keywords :
"Image restoration","Synthetic aperture radar","Bayesian methods","Cost function","Speckle","Noise reduction","Feature extraction","TV","Adaptive filters"
Journal_Title :
IEEE Geoscience and Remote Sensing Letters
Publisher :
ieee
ISSN :
1545-598X
Type :
jour
DOI :
10.1109/LGRS.2009.2024011
Filename :
5169986
Link To Document :
بازگشت