DocumentCode :
381898
Title :
Likelihood normalization for face authentication in variable recording conditions
Author :
Sanderson, Conrad ; Paliwal, Kuldip K.
Author_Institution :
Sch. of Microelectron. Eng., Griffith Univ., Brisbane, Qld., Australia
Volume :
1
fYear :
2002
fDate :
2002
Abstract :
In this paper we evaluate the effectiveness of two likelihood normalization techniques, the background model set (BMS) and the universal background model (UBM), for improving performance and robustness of four face authentication systems utilizing a Gaussian mixture model (GMM) classifier. The systems differ in the feature extraction method used: eigenfaces (PCA), 2-D DCT, 2-D Gabor wavelets and DCT-mod2. Experiments on the VidTIMIT database, using test images corrupted either by an illumination change or compression artefacts, suggest that likelihood normalization has little effect when using PCA derived features, while providing significant performance improvements when using the remaining features.
Keywords :
discrete cosine transforms; face recognition; feature extraction; principal component analysis; wavelet transforms; 2-D DCT; 2-D Gabor wavelets; DCT-mod2; GMM classifier; Gaussian mixture model classifier; PCA derived features; VidTIMIT database; background model set; eigenfaces; face authentication; feature extraction; likelihood normalization techniques; principal component analysis; universal background model; variable recording conditions; Authentication; Discrete cosine transforms; Feature extraction; Image coding; Image databases; Lighting; Principal component analysis; Robustness; Spatial databases; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing. 2002. Proceedings. 2002 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-7622-6
Type :
conf
DOI :
10.1109/ICIP.2002.1038019
Filename :
1038019
Link To Document :
بازگشت