DocumentCode :
382223
Title :
Face recognition using mixtures of principal components
Author :
Turaga, Deepak S. ; Chen, Tsuhan
Author_Institution :
Philips Res. USA, Briarcliff Manor, NY, USA
Volume :
2
fYear :
2002
fDate :
2002
Abstract :
We introduce an efficient statistical modeling technique called mixture of principal components (MPC). This model is a linear extension to the traditional principal component analysis (PCA) and uses a mixture of eigenspaces to capture data variations. We use the model to capture face appearance variations due to pose and lighting changes. We show that this more efficient modeling leads to improved face recognition performance.
Keywords :
eigenvalues and eigenfunctions; face recognition; image matching; principal component analysis; PCA; eigenspaces; face appearance variations; face recognition; lighting changes; mixture of principal components; pose; principal component analysis; statistical modeling; template matching; Authentication; Clustering algorithms; Databases; Displays; Face recognition; Neural networks; Partitioning algorithms; Principal component analysis; System testing; Vector quantization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing. 2002. Proceedings. 2002 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-7622-6
Type :
conf
DOI :
10.1109/ICIP.2002.1039897
Filename :
1039897
Link To Document :
بازگشت