• DocumentCode
    383430
  • Title

    A new textual/non-textual classifier for document skew correction

  • Author

    Zhu, Xiaoyan ; Yin, Xiaoxin

  • Author_Institution
    Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China
  • Volume
    1
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    480
  • Abstract
    A robust approach is proposed for document skew detection. We use Fourier analysis and SVM to classify textual areas from non-textual areas of documents. We also propose a robust method to determine the skew angle from textual areas. Our approach achieves good performance on documents with large area of non-textual contents.
  • Keywords
    document handling; document image processing; image classification; optical character recognition; Fourier analysis; OCR; SVM; document skew detection; documents; non-textual areas; skew correction; textual areas; textual document images; Fourier transforms; IEEE members; Kernel; Optical character recognition software; Polynomials; Robustness; Support vector machine classification; Support vector machines; Text analysis; Virtual colonoscopy;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2002. Proceedings. 16th International Conference on
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-1695-X
  • Type

    conf

  • DOI
    10.1109/ICPR.2002.1044768
  • Filename
    1044768