Title :
Robust affine motion estimation in joint image space using tensor voting
Author :
Kang, Eun-Young ; Cohen, Isaac ; Medioni, Gérard
Author_Institution :
Inst. for Robotics & Intelligent Syst., Univ. of Southern California, Los Angeles, CA, USA
Abstract :
Robustness of parameter estimation relies on discriminating inliers from outliers within the set of correspondences. In this paper, we present a method using tensor voting to eliminate outliers and estimating affine transformation parameters directly from covariance matrix of selected inliers without additional parameter estimation processing. Our approach is based on the representation of the correspondences in a decoupled joint image space and the use of the metric associated with the affine transformation. We enforce the metric property in a joint image space for tensor voting, detect several inlier groups corresponding distinct affine motions and directly estimate affine parameters from each set of inliers. The proposed approach is illustrated by a set of challenging examples.
Keywords :
covariance matrices; motion estimation; parameter estimation; stability; tensors; correspondence representation; covariance matrix; decoupled joint image space; inliers; joint image space; outliers; parameter estimation robustness; robust affine motion estimation; tensor voting; Data mining; Intelligent robots; Motion detection; Motion estimation; Parameter estimation; Parametric statistics; Robustness; Tensile stress; Video compression; Voting;
Conference_Titel :
Pattern Recognition, 2002. Proceedings. 16th International Conference on
Print_ISBN :
0-7695-1695-X
DOI :
10.1109/ICPR.2002.1047445