DocumentCode :
384286
Title :
Fast on-line learning of point distribution models
Author :
Al-Shaher, Abdullah A. ; Hancock, Edwin R.
Author_Institution :
Dept. of Comput. Sci., York Univ., UK
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
208
Abstract :
We present a fast procedure for training point distribution models (PDM) using the EM algorithm. Rather than estimating the class means and covariance matrices needed to construct the PDM, the method iteratively refines the eigenvectors of the covariance matrix using a gradient ascent technique. We evaluate the method on the problem of learning class-structure of Arabic characters.
Keywords :
Gaussian distribution; character recognition; eigenvalues and eigenfunctions; iterative methods; unsupervised learning; Arabic character class-structure; EM algorithm; class means; covariance matrices; eigenvectors; fast on-line learning; gradient ascent technique; iterative refinement; learning; point distribution models; training; Computer science; Covariance matrix; Deformable models; Gaussian distribution; Iterative algorithms; Parameter estimation; Principal component analysis; Shape; Training data; Unsupervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2002. Proceedings. 16th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-1695-X
Type :
conf
DOI :
10.1109/ICPR.2002.1048274
Filename :
1048274
Link To Document :
بازگشت