DocumentCode :
3849027
Title :
New Approach for the Identification and Validation of a Nonlinear F/A-18 Model by Use of Neural Networks
Author :
Nicolas Boely;Ruxandra Mihaela Botez
Author_Institution :
Bombardier Aerospace, Montreal, Canada
Volume :
21
Issue :
11
fYear :
2010
Firstpage :
1759
Lastpage :
1765
Abstract :
This paper presents a new approach for identifying and validating the F/A-18 aeroservoelastic model, based on flight flutter tests. The neural network (NN), trained with five different flight flutter cases, is validated using 11 other flight flutter test (FFT) data. A total of 16 FFT cases were obtained for all three flight regimes (subsonic, transonic, and supersonic) at Mach numbers ranging between 0.85 and 1.30 and at altitudes of between 5000 and 25 000 ft. The results obtained highlight the efficiency of the multilayer perceptron NN in model identification. Optimization of the NN requires mixing of two proprieties: the hidden layer size reduction and four-layered NN performances. This paper shows that a four-layer NN with only 16 neurons is enough to create an accurate model. The fit coefficients were higher than 92% for both the identification and the validation test data, thus demonstrating accuracy of the NN.
Keywords :
"Artificial neural networks","Neurons","Data models","Atmospheric modeling","Aircraft","MIMO","Robustness"
Journal_Title :
IEEE Transactions on Neural Networks
Publisher :
ieee
ISSN :
1045-9227
Type :
jour
DOI :
10.1109/TNN.2010.2071398
Filename :
5582299
Link To Document :
بازگشت