DocumentCode :
387801
Title :
A silhouette-slice theorem for opaque 3-D objects
Author :
Van Hove, Patrick L. ; Verly, Jacques G.
Author_Institution :
MIT Lincoln Laboratory, Lexington, MA
Volume :
10
fYear :
1985
fDate :
31138
Firstpage :
933
Lastpage :
936
Abstract :
This paper presents a silhouette-slice theorem for convex opaque 3-D objects. The theorem states that the 2-D Curvature Transform (CT) of any silhouette contour is a slice of the 3-D CT of the object surface at some appropriate orientation. The 2-D and 3- D CT´s are defined as curvature functions on the Gaussian circle and sphere of the silhouette and object, respectively. The new theorem and transforms are shown to be the counterparts in silhouette imaging of the projection-slice theorem and Fourier Transforms of line-integral projection imaging.
Keywords :
Chromium; Computed tomography; Fourier transforms; Geometry; Goniometers; Government; Laboratories; Tensile stress; Turning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '85.
Type :
conf
DOI :
10.1109/ICASSP.1985.1168239
Filename :
1168239
Link To Document :
بازگشت