• DocumentCode
    38812
  • Title

    Microstructure and Magnetic Performance of Perpendicularly Magnetic Anisotropic Fe _{3} Pt/Fe2Pt/ </h1></div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Author</span></div><div class='col-12 col-md-9 leftDirection leftAlign'><h2 class='mb-0 fw-semibold'>Yi-Hung Lin ; Jen-Hwa Hsu ; Fu-Te Yuan ; Kuo, P.C. ; Mei, J.K.</h2></div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Author_Institution</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>Grad. Inst. of Mater. Sci. & Eng., Nat. Taiwan Univ., Taipei, Taiwan</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Volume</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>49</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Issue</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>7</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>fYear</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>2013</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>fDate</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>Jul-13</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Firstpage</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>3679</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Lastpage</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>3682</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Abstract</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>L1<sub>0</sub>-FePt(001) films with compositional gradient was proposed to realize the graded film with magnetic perpendicular anisotropy in this study. A hard magnetic layer of 5 nm-thick stoichiometry L1<sub>0</sub> FePt was initially deposited onto a glass substrate with a thin MgO underlayer. The hard layer exhibits strong (001) texture, island-type surface morphology, high perpendicular magnetic anisotropy (PMA), and large out-of-plane coercivity (H<sub>c⊥</sub>) of about 20 kOe at room temperature (RT). A 5-nm-thick compositionally graded Fe-Pt layer was then deposited on the L1<sub>0</sub> FePt hard layer at deposition temperatures (T<sub>d</sub>) from 300 to 450°C. Good (001)-texture is retained in the graded layer and the island-type morphology is preserved when T<sub>d</sub> ≤ 400°C. A significant reduction in H<sub>c⊥</sub> from 20 to around 7 kOe was achieved. Besides, the graded films exhibit magnetically single-phase reversal behavior with a high anisotropy field (H<sub>0</sub>) of ~90 kOe. When T<sub>d</sub> > 400°C, PMA of the films was reduced due to the extensive diffusion between the Fe-rich graded and hard layers. Our proposed scheme demonstrate the feasibility of magnetic gradation induced by binary composition variation in FePt films, providing useful information for designing future ultrahigh magnetic recording media.</div></div>
        </li>
        <li class='list-group-item border-0 py-3 px-0'>
            <div class='row g-0 align-items-center mb-2'><div class='col-12 col-md-3 fullRecLabelEnglish fw-bold mb-2 mb-md-0'><span class='text-muted small'>Keywords</span></div><div class='col-12 col-md-9 leftDirection leftAlign'>coercive force; diffusion; iron alloys; magnetic thin films; magnetisation reversal; perpendicular magnetic anisotropy; platinum alloys; sputter deposition; stoichiometry; surface morphology; texture; FePt; SiO<sub>2</sub>-MgO; binary composition; compositional gradient layer; diffusion; glass substrate; hard magnetic layer; high perpendicular magnetic anisotropy; island-type surface morphology; magnetic gradation; magnetic graded films; magnetic properties; magnetic single phase reversal behavior; magnetron cosputtering; microstructure; out-of-plane coercivity; size 5 nm; stoichiometry; temperature 293 K to 298 K; texture; thin magnesium oxide underlayer; ultrahigh magnetic recording media; Iron; Magnetic domains; Media; Perpendicular magnetic anisotropy; Perpendicular magnetic recording; <formula formulatype=$L1_{0}$; FePt alloy; graded film; magnetization reversal; perpendicular magnetic anisotropy;

  • fLanguage
    English
  • Journal_Title
    Magnetics, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9464
  • Type

    jour

  • DOI
    10.1109/TMAG.2013.2242443
  • Filename
    6558978