Title :
Scalable Hypergrid k-NN-Based Online Anomaly Detection in Wireless Sensor Networks
Author :
Miao Xie ; Jiankun Hu ; Song Han ; Chen, Hsiao-hwa
Author_Institution :
Sch. of Eng. & Inf. Technol., Univ. of New South Wales (UNSW), Canberra, ACT, Australia
Abstract :
Online anomaly detection (AD) is an important technique for monitoring wireless sensor networks (WSNs), which protects WSNs from cyberattacks and random faults. As a scalable and parameter-free unsupervised AD technique, k-nearest neighbor (kNN) algorithm has attracted a lot of attention for its applications in computer networks and WSNs. However, the nature of lazy-learning makes the kNN-based AD schemes difficult to be used in an online manner, especially when communication cost is constrained. In this paper, a new kNN-based AD scheme based on hypergrid intuition is proposed for WSN applications to overcome the lazy-learning problem. Through redefining anomaly from a hypersphere detection region (DR) to a hypercube DR, the computational complexity is reduced significantly. At the same time, an attached coefficient is used to convert a hypergrid structure into a positive coordinate space in order to retain the redundancy for online update and tailor for bit operation. In addition, distributed computing is taken into account, and position of the hypercube is encoded by a few bits only using the bit operation. As a result, the new scheme is able to work successfully in any environment without human interventions. Finally, the experiments with a real WSN data set demonstrate that the proposed scheme is effective and robust.
Keywords :
computational complexity; hypercube networks; telecommunication computing; telecommunication network reliability; unsupervised learning; wireless sensor networks; WSN; communication cost; computational complexity; computer network; cyberattack protection; distributed computing; hypercube DR; hypersphere detection region; k-nearest neighbor algorithm; lazy-learning problem; parameter-free unsupervised AD technique; positive coordinate space; random fault protection; scalable hypergrid k-NN-based online anomaly detection; wireless sensor network; Complexity theory; Detectors; Encoding; Monitoring; Real time systems; Training data; Wireless sensor networks; Complexity theory; Detectors; Encoding; Monitoring; Real time systems; Training data; Wireless sensor network; Wireless sensor networks; anomaly detection; distributed computing; k-nearest neighbor; parameter selection;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
DOI :
10.1109/TPDS.2012.261