DocumentCode :
389568
Title :
Gender-preferential text mining of e-mail discourse
Author :
Corney, Malcolm ; De Vel, Olivier ; Anderson, Alison ; Mohay, George
Author_Institution :
Fac. of Inf. Technol., Queensland Univ. of Technol., Brisbane, Qld., Australia
fYear :
2002
fDate :
2002
Firstpage :
282
Lastpage :
289
Abstract :
This paper describes an investigation of authorship gender attribution mining from e-mail text documents. We used an extended set of predominantly topic content-free e-mail document features such as style markers, structural characteristics and gender-preferential language features together with a support vector machine learning algorithm. Experiments using a corpus of e-mail documents generated by a large number of authors of both genders gave promising results for author gender categorisation.
Keywords :
electronic mail; security of data; text analysis; SVM; authorship gender attribution mining; e-mail discourse; gender-preferential language features; gender-preferential text mining; structural characteristics; style markers; support vector machine learning algorithm; topic content-free e-mail document features; Australia; Computer crime; Computer networks; Electronic mail; Forensics; Law enforcement; Machine learning; Machine learning algorithms; Support vector machines; Text mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Security Applications Conference, 2002. Proceedings. 18th Annual
ISSN :
1063-9527
Print_ISBN :
0-7695-1828-1
Type :
conf
DOI :
10.1109/CSAC.2002.1176299
Filename :
1176299
Link To Document :
بازگشت