DocumentCode :
389700
Title :
A new adaptive weighted fusion algorithm for multi-sensor tracking
Author :
Zhao, Jiang ; Hu, Shi-qiang
Author_Institution :
Sch. of Electron. & Inf. Eng., HeBei Univ. of Sci. & Technol., China
Volume :
1
fYear :
2002
fDate :
2002
Firstpage :
285
Abstract :
Presents a technique for the online adaptive weighted fusion algorithm for multi-sensor tracking. The algorithm consists three steps: (i) estimation of the variance of the sensor\´s measurements noise using statistical theory; (ii) adjustment of the fused sensor\´s weight coefficient according to the sensor\´s noise variance change; (iii) prediction of the next target position using the "current" statistical model and a Kalman filter method. Computer simulation results are presented to demonstrate the performance of this approach.
Keywords :
Kalman filters; estimation theory; fuzzy logic; noise; sensor fusion; target tracking; Kalman filter method; adaptive weighted fusion algorithm; fuzzy reasoning; measurements noise; multi-sensor tracking; statistical theory; target tracking; variance estimation; Acceleration; Bayesian methods; Coordinate measuring machines; Cybernetics; Estimation theory; Filters; Fuzzy logic; Fuzzy sets; Sensor systems; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on
Print_ISBN :
0-7803-7508-4
Type :
conf
DOI :
10.1109/ICMLC.2002.1176758
Filename :
1176758
Link To Document :
بازگشت