DocumentCode :
391353
Title :
New methods for the statistical analysis of Hidden Markov Models
Author :
Gerencsér, Lászlo ; Molnár-Sáska, Gábor ; Michaletzky, György ; Tusnády, Gábor ; Vágó, Zsuzsanna
Author_Institution :
Comput. & Autom. Inst., Hungarian Acad. of Sci., Budapest, Hungary
Volume :
2
fYear :
2002
fDate :
10-13 Dec. 2002
Firstpage :
2272
Abstract :
The estimation of Hidden Markov Models has attracted a lot of attention recently. The purpose of this paper is to lay the foundation for a new approach for the analysis of the maximum-likelihood estimation of HMM-s, using representation of HMM-s due to Borkar (1993). A useful connection between the estimation theory of HMM-s and linear stochastic systems is established via the theory of L-mixing processes. The results are potentially useful for deriving strong approximation results, which are in turn applicable to analyze adaptive predictors and change detection methods.
Keywords :
hidden Markov models; maximum likelihood estimation; statistical analysis; stochastic systems; Doeblin-condition; Hidden Markov Models; L-mixing processes; estimation theory; maximum-likelihood estimation; random transformations; stochastic systems; Automation; Filters; Hidden Markov models; Markov processes; Mathematics; Maximum likelihood estimation; Stability; State-space methods; Statistical analysis; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2002, Proceedings of the 41st IEEE Conference on
ISSN :
0191-2216
Print_ISBN :
0-7803-7516-5
Type :
conf
DOI :
10.1109/CDC.2002.1184870
Filename :
1184870
Link To Document :
بازگشت