DocumentCode :
392973
Title :
Investigation of photometric stereo method for 3-D shape recovery from underwater imagery
Author :
Negahdaripour, Shahriar ; Zhang, H. ; Han, X.
Author_Institution :
Electr. & Comput. Eng. Dept., Miami Univ., Coral Gables, FL, USA
Volume :
2
fYear :
2002
fDate :
29-31 Oct. 2002
Firstpage :
1010
Abstract :
We explore the application to underwater imagery of the photometric stereo technique - the recovery of 3-D shape from three or more images of the same scene acquired under different lighting conditions. Ignoring back-scatter effects, we generalize McGlamery´s (1975) model - expressing the image in terms of two direct and small-angle forward-scattered components - to devise a recursive 3-D shape reconstruction technique. By correction for certain range-dependent effects in underwater imagery - e.g. due to the medium attenuation, point source spreading loss, and irradiance gain from small-angle forward scattering - that are responsible for deviations from the land model, we construct rectified images in order to apply a closed-form solution based on the land image model of a Lambertian surface under collimated-source illumination. The method requires knowledge of the medium attenuation coefficient - readily measured from standard instruments (e.g. AC-9 (http://www.wetlabs.com/Products/ac9/ac9.htm)) - and is relatively robust with respect to rough estimates of two other empirical parameters approximated by the tabulated values of the absorption and total scattering coefficients for different bodies of water. Experimental results with images acquired under a variety of medium conditions are presented to demonstrate performance.
Keywords :
computer vision; image reconstruction; oceanographic techniques; photometry; stereo image processing; 3D shape recovery; Lambertian surface; backscatter effects; closed-form solution; collimated-source illumination; irradiance gain; medium attenuation; photometric stereo method; point source spreading loss; range-dependent effects; rectified images; recursive 3D shape reconstruction technique; small-angle forward scattering; underwater imagery; Closed-form solution; Image reconstruction; Land surface; Layout; Light scattering; Optical attenuators; Photometry; Rough surfaces; Shape; Surface roughness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
OCEANS '02 MTS/IEEE
Print_ISBN :
0-7803-7534-3
Type :
conf
DOI :
10.1109/OCEANS.2002.1192106
Filename :
1192106
Link To Document :
بازگشت